Lebanese American University
School of Arts and Sciences
Department of Computer Science and Mathematics

CSC 320 - Computer Organization

Problem Set 7: Large and Fast: Exploiting Memory Hierarchy

Exercise 1

In this exercise we look at memory locality properties of matrix computation. The following code is written in C, where elements within the same row are stored contiguously.

a.	for $(\mathrm{I}=0 ; \mathrm{I}<8 ; \mathrm{I}++)$ for $(\mathrm{J}=0 ; \mathrm{J}<8000 ; \mathrm{J}++)$ $\mathrm{A}[\mathrm{I}][\mathrm{J}]=\mathrm{B}[\mathrm{I}][0]+\mathrm{A}[\mathrm{J}][\mathrm{I}] ;$
b.	for $(\mathrm{J}=0 ; \mathrm{J}<8000 ; \mathrm{J}++)$ for $(\mathrm{I}=0 ; \mathrm{J}<8 ; \mathrm{I}++)$ $\mathrm{A}[\mathrm{I}][\mathrm{J}]=\mathrm{B}[\mathrm{I}][0]+\mathrm{A}[\mathrm{J}][\mathrm{I}] ;$

1.1 How many 32-bit integers can be stored in a 16-byte cache line?

Solution:
4
1.2 References to which variables exhibit temporal locality?

Solution:
a. I, J
b. $\mathrm{B}[I][0]$
1.3 References to which variables exhibit spatial locality?

Solution:

a.	$\mathrm{A}[\mathrm{I}][\mathrm{J}]$
b.	$\mathrm{A}[\mathrm{J}][\mathrm{I}]$

Locality is affected by both the reference order and data layout. The same computation can also be written below in Matlab, which differs from C by contiguously storing matrix elements within the same column.
\square
1.4 How many 16-byte cache lines are needed to store all 32-bit matrix elements being referenced?

Solution:

a.	$8 \times 8000 / 4 \times 2-8 \times 8 / 4+8000 / 4=33984$
b.	$8 \times 8000 / 4 \times 2-8 \times 8 / 4+8 / 4=31986$

1.5 References to which variables exhibit temporal locality?

Solution:
a. I, J
b. \quad I, J, B(I, 0)
1.6 References to which variables exhibit spatial locality?

Solution:

a.	A(J, I)
b.	A(I, J), A(J, I), B(I, 0)

Exercise 2

For a direct-mapped cache design with a 32-bit address, the following bits of the address are used to access the cache.

	Tag	Index	Offeset
a.	$31-10$	$9-5$	$4-0$
b.	$31-12$	$11-6$	$5-0$

2.1 What is the cache line size (in words)?

Solution:

a.	8
b.	16

2.2 How many entries does the cache have?

Solution:

a.	32
b.	64

2.3 What is the ratio between total bits required for such a cache implementation over the data storage bits?

Starting from power on, the following byte-addressed cache references are recorded

Address	0	4	16	132	232	160	1024	30	140	3100	180	2180

Solution:
a. $1+(22 / 8 / 32)=1.086$

b.	$1+(20 / 8 / 64)=1.039$

2.4 How many blocks are replaced?

In the following parts, consider a direct mapped cache with 64 blocks and 16 bytes/block

Adress	0	4	16	132	232	160	1024	30	140	3100	180	2180
Line ID	0	0	1	8	14	10	0	1	8	1	11	8
Hit/miss	M	H	M	M	M	M	M	H	H	M	M	M
Replace	N	N	N	N	N	N	Y	N	N	Y	N	Y

2.5 What is the hit ratio?

Solution: 0.25
2.6 List the final state of the cache, with each valid entry represented as a record of <index, tag, data>.

Solution:

```
<0000012, 00012, mem[1024]>
<0000012, 00112, mem[16]>
<0010112, 00002, mem[176]>
<0010002, 00102, mem[2176]>
<0011102,00002, mem[224]>
<0010102,00002, mem[160]>
```

